In this tutorial, we’ll build a real-time fraud detection system using MongoDB Atlas Vector Search, Apache Kafka, and AI-generated embeddings. We’ll demonstrate how MongoDB Atlas Vector Search can be used to detect anomalies in a stream of financial transactions by analyzing a user’s transaction history and identifying suspicious behavior based on LLM-generated embeddings.
Our solution will monitor MongoDB Change Streams using the Java synchronous driver, triggering vector searches on each new transaction to detect potential fraud. While this approach works well for our demo, and for many use cases, we’ll also discuss its limitations. Throughout the tutorial, I’ll cover alternative strategies to optimize performance, whether you need higher transaction throughput, faster fraud detection, or a more scalable architecture.
Read More